Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Chem Asian J ; : e202400238, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578057

RESUMO

Diarylethenes (DAE), a class of best performing photoswitchable compounds, where the key features of stability, photoisomerization wavelengths, quantum yield and variability in the photoisomers significantly depend on their derivatization. The last decade has witnessed a surge in the engagement of DAEs to different areas of chemical and biological impacts like catalysis in synthetic organic chemistry, biological markers for in vivo imaging of live cells, chemosensing within cells to photo-dynamic therapy by controlled generation of singlet oxygen. Previous reviews on applications of DAE-based systems did not predominantly cover all the aspects of biological and industrial implementations. They have covered only one field of application either in the biological science or the synthetic aspect or photochromic aspects only. This review is a coalition of all those aspects in last six years. Here the variation of properties of the DAE systems with respect to structural diversifications have been discussed in detail along with their potential applications in catalysis, regulating singlet oxygen generation, photodynamic therapy, bioimaging and their future prospects. We hope that this review will certainly motivate researchers to generate new DAE architectures with superior bioimaging or catalyzing properties in future.

2.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611774

RESUMO

Due to the depletion of the global ozone layer and the presence of ozone holes, humans are increasingly exposed to threats from solar ultraviolet radiation. Therefore, researching and developing a highly selective, sensitive, simple, and fast ultraviolet sensor is of significant importance for personal protection. In recent years, new nanomaterials have shown good application prospects in the research of ultraviolet sensors. MoOx nanostructures were prepared by a hydrothermal method. The experimental results show that, compared to traditional photochromic compounds, the new MoOx nanostructures exhibit high uniqueness, high selectivity, and excellent stability, and can perform rapid and accurate detection under full-band light. The beam sensor can not only detect through traditional electrical signal output, but also amplify, display, and analyze the beam through visualization and visual analysis, further improving the reliability and practicality of its application.

3.
Luminescence ; 39(4): e4746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644460

RESUMO

The use of photochromism to increase the credibility of consumer goods has shown great promise. To provide mechanically dependable anticounterfeiting nanofibres, it has also been critical to improve the engineering processes of authentication patterns. Mechanically robust and photoluminescent electrospun poly(ethylene oxide)/glass (PGLS) nanofibres (150-350 nm) immobilized with nanoparticles of lanthanide-doped aluminate (NLA; 8-15 nm) were developed using electrospinning technology for anticounterfeiting purposes. The provided nanofibrous membranes changed colour from transparent to green when irradiated with ultraviolet light. By delivering NLA with homogeneous distribution without aggregations, we were able to keep the nanofibrous membrane transparent. When excited at 365 nm, NLA@PGLS nanofibres showed an emission intensity at 517 nm. The hydrophobicity of NLA@PGLS nanofibres improved by raising the pigment concentration as the contact angle was increased from 146.4° to 160.3°. After being triggered by ultraviolet light, NLA@PGLS showed quick and reversible photochromism without fatigue. It was shown that the suggested method can be applied to reliably produce various anticounterfeiting materials.


Assuntos
Vidro , Nanofibras , Polietilenoglicóis , Raios Ultravioleta , Nanofibras/química , Polietilenoglicóis/química , Vidro/química , Tamanho da Partícula , Propriedades de Superfície
4.
Sci Rep ; 14(1): 7325, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538740

RESUMO

The ability to modulate optical and electrical properties of two-dimensional (2D) semiconductors has sparked considerable interest in transition metal dichalcogenides (TMDs). Herein, we introduce a facile strategy for modulating optoelectronic properties of monolayer MoSe2 with external light. Photochromic diarylethene (DAE) molecules formed a 2-nm-thick uniform layer on MoSe2, switching between its closed- and open-form isomers under UV and visible irradiation, respectively. We have discovered that the closed DAE conformation under UV has its lowest unoccupied molecular orbital energy level lower than the conduction band minimum of MoSe2, which facilitates photoinduced charge separation at the hybrid interface and quenches photoluminescence (PL) from monolayer flakes. In contrast, open isomers under visible light prevent photoexcited electron transfer from MoSe2 to DAE, thus retaining PL emission properties. Alternating UV and visible light repeatedly show a dynamic modulation of optoelectronic signatures of MoSe2. Conductive atomic force microscopy and Kelvin probe force microscopy also reveal an increase in conductivity and work function of MoSe2/DAE with photoswitched closed-form DAE. These results may open new opportunities for designing new phototransistors and other 2D optoelectronic devices.

5.
Chembiochem ; 25(8): e202400143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38442077

RESUMO

This study explores the potential of controlling organismal development with light by using reversible photomodulation of activity in bioactive compounds. Specifically, our research focuses on plinabulin 1, an inhibitor of tubulin dynamics that contains a photochromic motif called hemipiperazine. The two isomeric forms, Z-1 and E-1, can partially interconvert with light, yet show remarkable thermal stability in darkness. The Z-isomer exhibits higher cytotoxicity due to stronger binding to α-tubulin's colchicine site. The less toxic E-1 form, considered a "pro-drug", can be isolated in vitro and stored. Upon activation by blue or cyan light, it predominantly generates the more toxic Z-1 form. Here we demonstrate that 1 can effectively photomodulate epiboly, a critical microtubule-dependent cell movement during gastrulation in zebrafish embryos. This research highlights the potential of photomodulation for precise and reversible control of cellular activities and organismal development.


Assuntos
Gastrulação , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Gastrulação/fisiologia , Microtúbulos , Tubulina (Proteína)/metabolismo , Embrião não Mamífero
6.
Angew Chem Int Ed Engl ; 63(16): e202402349, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38349340

RESUMO

Improving the photoswitching rate and robustness of photochromic molecules in bulk solids is paramount for practical applications but remains an on-going challenge. Here, we introduce an octupolar design paradigm to develop a new family of visible light organic photoswitches, namely multi-branched octupolar Stenhouse Adducts (MOPSAs) featuring a C3-symmetrical A3-(D-core) architecture with a dipolar donor-acceptor (D-A) photochrome in each branch. Our design couples multi-dimensional geometric and electronic effects of MOPSAs to enable robust ultrafast reversible photoswitching in bulk polymers. Specifically, the optimal MOPSA (4 wt %) in commercial polyurethane films accomplishes nearly 100 % discoloration in 6 s under visible light with ∼ 100 % thermal-recovery in 17.4 s at 60 °C, while the acquired kinetics constants are 3∼7 times that of dipolar DASA counterpart and 1∼2 orders of magnitude higher than those of reported DASAs in polymers. Importantly, the MOPSA-doped polymer films sustain 500 discoloration/recovery cycles with slow degradation, superior to the existing DASAs in polymers (≤30 cycles). We discover that multi-dipolar coupling in MOPSA enables enhanced polarization and electron delocalization, promoting the rate-determining thermal cyclization, while the branched and non-planar geometry of MOPSA induces large free volume to facilitate the isomerization. This design can be extended to develop spiropyran or azobenzene-based ultrafast photochromic films. The superior photoswitching performance of MOPSAs together with their high-yield and scalable synthesis and facile film processing inspires us to explore their versatile uses as smart inks or labels for time-temperature indicators, optical logic encryption and multi-levelled data encryption.

7.
Small ; : e2309514, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415913

RESUMO

Sustainable, durable, and diverse photochromic smart textiles based on bacterial cellulose (BC) have emerged as attractive candidates in UV-sensing applications due to the green and easy functionalization of BC. However, existing BC-based photochromic textiles lack photochromic efficiency and combining fastness. In this study, a green strategy for in situ fermentation is developed to achieve the directional distribution of functional particles and remarkable photochromism in photochromic bacterial cellulose (PBC). The unique functional design obtained by regulating the photochromic dye distribution in 3D nanonetworks of PBCs during in situ growth affords a more uniform distribution and high fastness. Benefiting from the uniform distribution of photochromic dyes and adequate utilization of the 3D network structure, more surface area is provided to receive and utilize the photon energy from the UV rays, making the photochromic process more effective. The as-prepared PBCs exhibited rapid (within 1 min) and stable (30 cycles) discoloration and multicolor selectivity. Their simple preparation process and exceptional wearability, e.g., their flexibility, lightweight, and air permeability, make them suitable for various applications, including tunable color switching systems, photopatterning, and daily sunlight UV monitoring. This study provides empirical value for the biofabrication of photochromic textiles and wearable flexible UV sensors.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124031, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38368822

RESUMO

Metal-guided photochromic material (photochromic complex) is one of the latest versions of photo-responsive materials due to their smart behaviour and promising real-world applications. The present work explores the molecular-level origin of metal-guided photochromism using a photodynamic approach and ultrafast absorption spectroscopy, to address all existing lacunas. Here, rhodamine B (RhB) dye containing the Schiff base zinc complex is considered a representative photochromic complex for both theoretical treatment and experimental observations. Detailed theoretical studies, including geometry optimization, frontier molecular orbital (FMO) analysis, transition state (TS) identification, and natural bond orbital (NBO) analysis, along with spectral studies, are employed to investigate the photodynamic equilibrium (enol-form keto-form). This equilibrium is regulated by the interplay of intrinsic factors (push-pull effect) and extrinsic factors (such as UV-light, the phenolic-OH group, metal ions, and solvents). The potential energy surface (PES) of the photo-conversion (enol →enol*→keto*→ meta-stable keto) is evaluated. While, the PES of the reversion (meta-stable keto →enol) is constructed based on the studies of thermo-reversion and photo-reversion. Finally, the theoretical findings related to the photodynamic equilibrium are validated by direct experimental evidence obtained through femtosecond transient absorption (fs-TA) spectroscopy.

9.
Small ; : e2311993, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363065

RESUMO

Excessive ultraviolet (UV) radiation has serious damage to human's health, therefore the development of visible, portable, and wearable sensor for monitoring UV radiation, especially the cumulative UV dosage, is highly desired but full of challenges. Herein, a wearable and flexible UV dosimeter based on photochromic perovskite nanocrystals (PNCs) is designed. The obtained CsPbCl3 PNCs dispersed in dibromomethane (PNCs-DBM) undergo continuous, vivid, and multiple (from very weak purple to blue, cyan, and finally strong green) color change in response to UV radiation. It is demonstrated that the UV-induced degradation of DBM and subsequent anion-exchange reaction between CsPbCl3 and Br- , play a crucial role in the color change of PNCs-DBM. The properties of continuous fluorescence color change and enhanced fluorescence intensity enable the construction of sensitive and visible UV dosimeter. Furthermore, by integrated photochromic PNCs with flexible bracelet or PDMS substrate, a wearable UV sensor or a multi-indicator array for the detection of solar UV dosage is developed. This work may advance the fundamental understanding about photochromic perovskite, and show promising application of perovskite nanomaterials in easily fabricated, low-cost, visualized, and wearable solar UV dosimeter.

10.
ACS Appl Mater Interfaces ; 16(10): 13305-13315, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421948

RESUMO

Photochromic materials with rapid color-switching, long color retention times, and rewritability are crucial for meeting the requirements of future rewritable ink-free media. However, these requirements are challenging to satisfy simultaneously due to the inherent constraints among these features. Herein, a novel photochromic nanofiber nonwoven fabric was designed and constructed based on a conjugated organic-inorganic hybrid structure through electrospinning and hot-pressing techniques. The as-prepared fabric can change color in merely 5 s under UV irradiation and can reach saturation within 2 min. In addition, upon the introduction of a potent metal chelator, its color retention time exceeds 14 days under ambient conditions, significantly longer than that of most rewritable materials recently reported (several hours to 5 days). Moreover, the fabric exhibits high writing resolution and can be photoprinted and heat-erased for over 100 cycles while still retaining 96% of its initial reflectivity. Hydrophobic thermoplastic polyurethane provides the fabric with excellent waterproof and antifouling properties, thus preventing the composite from swelling or collecting graffiti due to moisture or dust. This work exploits a competitive approach for designing flexible, rewritable, and superior functional wearables with practical applications.

11.
Carbohydr Polym ; 327: 121664, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171681

RESUMO

Herein, we reported a general and green synthetic strategy for photochromic functional alginate derivatives grafting with isoindolinone spiroxanthenes. Under mild condition, diverse 2-aminoalkyl isoindolinone spiroxanthene derivatives have been prepared from organic photochromic isobenzofuranone spiroxanthenes (including rhodamine B, rhodamine 6G and fluorescein), and grafted on alginate chains through amidation reaction using diamine as a linkage with water as a green solvent at room temperature. The photochromic properties of the fluorophores-modified polymers and the effect of pH value have been explored. Under acid conditions, the spiroisoindolinone rings of alginate derivatives are opened resulting in showing absorption bands and fluorescence with orange to green emission, while the alginate derivatives turned to colourless under basic conditions which is reversibly. In addition to biodegradability and biocompatibility, the polymers exhibit good film-forming properties simultaneously. The films and fibers produced from the alginate derivatives also project good fluorescence properties.

12.
J Fluoresc ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198012

RESUMO

Synthesis-oriented design led us to the construction of a propeller-like dye, containing the triangle terthiophene and triphenylamine units. It reveals typical photochromic properties with alternated UV (390 nm) and visible light (˃ 440 nm) irradiation and the dye solution (in THF) color was also toggled between yellow-green and colorless. A new absorption band was observed in visible region (415-600 nm). Additionally, the photochromic dye was highly emissive with the absolute quantum yield being 0.27. After UV light irradiation, the emission was quenched significantly (Φ = 0.08) at photo-stationary state, and thus establishing a switchable emission "on-off" system by alternated UV/visible light irradiation cycle. Detailed structural analysis was carried out based on the optimized dye structure. Both the antiparallel conformation and the distance of reactive carbon atoms (< 4.2 Å) led to the smoothly photochromic behavior.

13.
Angle Orthod ; 94(2): 200-206, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052230

RESUMO

OBJECTIVES: To develop a photochromic bracket adhesive (PCA) with modification using photochromic material and evaluate the biocompatibility, bond strength, photochromic property, and adhesive removal efficiency. MATERIALS AND METHODS: The resin-modified glass ionomer powder was mixed with the photochromic material and then blended with the liquid agent to form PCA. Biocompatibility was evaluated by CCK-8 kit, and shear bond strength (SBS) was measured. Stereoscopic microscopy and quantitative color analysis were used to assess the photochromic property. Bracket bonding and debonding procedures were performed on a head simulator with the assistance of an ultraviolet radiator. The effectiveness of adhesive removal during bonding and debonding procedures was assessed using a stereomicroscope. Removal time was recorded, and the enamel damage index after debonding was analyzed. RESULTS: CCK-8 assay and SBS test indicated that 5wt.% mixing ratios of the photochromic material did not compromise the biocompatibility and SBS of the adhesive (PCA5). PCA5 showed photochromic properties and could help the operator remove adhesive more thoroughly without increasing enamel damage. CONCLUSIONS: Photochromic adhesive (PCA5) can be good for orthodontic adhesive removal and therefore has good clinical translation potential.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Cimentos Dentários , Cimentos de Resina/química , Sincalida , Propriedades de Superfície , Colagem Dentária/métodos , Teste de Materiais , Resistência ao Cisalhamento , Análise do Estresse Dentário
14.
Biosens Bioelectron ; 246: 115900, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056342

RESUMO

The outbreak of transmissible gastroenteritis virus (TGEV) will cause huge economic losses to the whole pig industry. Hence, there is urgent need to develop a rapid and ultrasensitive method for detection of TGEV. As a nucleic acid detection technique, loop-mediated isothermal amplification (LAMP) can achieve quantitative detection of targeted nucleic acids with high sensitivity and selectivity. Nevertheless, the signal outputs of LAMP method must be acquired by complicated instruments. In this work, we firstly developed a LAMP photochromic sensing chip for porcine TGEV detection by combination of the photochromic sensing chip and nucleic acid amplification. The detection signal was based on color change of electrochromic material rather than electrical signal, and thus the detection signal can be obtained by visualization without relying on complicated instrument. The entire test was performed with small fluorinated indium tin oxide electrodes modified with zinc oxide (ZnO) (a photocatalytic material) and Prussian blue (PB) (an electrochromic material). When photoinduced electrons produced by ZnO were injected into PB under light, the PB was reduced to Prussian white. The higher the concentration of TGEV, the more double-stranded DNA was produced after amplification. The amplified product produced greater impedance, and fewer electron was transferred, which affect the corresponding color change of PB. The sensing chip also showed highly sensitive response to TGEV, with the minimum limit of detection was determined to be 2.5 fg/µL. The sensing chip developed herein will provide a new avenue for DNA amplification detection by visualization.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Vírus da Gastroenterite Transmissível , Óxido de Zinco , Suínos , Animais , Vírus da Gastroenterite Transmissível/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos
15.
Angew Chem Int Ed Engl ; 63(9): e202310797, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37966433

RESUMO

Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.


Assuntos
Ácidos Nucleicos , Oligonucleotídeos , Oligonucleotídeos/química , Nucleosídeos , DNA/química
16.
Adv Sci (Weinh) ; 11(1): e2305378, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939314

RESUMO

Crystalline organic-inorganic hybrids, which exhibit colorimetric responses to ionizing radiation, have recently been recognized as promising alternatives to conventional X-ray dosimeters. However, X-ray-responsive organic-inorganic hybrids are scarce and the strategy to fine-tune their detection sensitivity remains elusive. Herein, an unprecedented mixed-ligand strategy is reported to modulate the X-ray detection efficacy of organic-inorganic hybrids. Deliberately blending the stimuli-responsive terpyridine carboxylate ligand (tpc- ) and the auxiliary pba- group with different ratios gives rise to two OD thorium-bearing clusters (Th-102 and Th-103) and a 1D coordination polymer (Th-104). Notably, distinct X-ray sensitivity is evident as a function of molar ratio of the tpc- ligand, following the trend of Th-102 > Th-103 > Th-104. Moreover, Th-102, which is exclusively built from the tpc- ligands with the highest degree of π-π interactions, exhibits the most sensitive radiochromic and fluorochromic responses toward X-ray with the lowest detection limit of 1.5 mGy. The study anticipates that this mixed-ligand strategy will be a versatile approach to tune the X-ray sensing efficacy of organic-inorganic hybrids.

17.
Luminescence ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092361

RESUMO

Photochromic fluorescent materials have rapidly developed as a new class of intelligent materials, offering a unique combination of traditional photochromic and organic fluorescent materials. These materials possess remarkable photoresponsiveness that can be observed by the naked eye and exhibit fluorescence color change. Consequently, they have found widespread applications in various domains, including molecular switches, logic encryption, medical diagnosis and treatment, and biosensors. Among the multitude of photochromic systems, those based on dithienylethenes (DTEs) have garnered significant attention due to their exceptional photochromic efficiency, commendable reversible photoresponse and fatigue resistance, as well as excellent photostability and thermal stability. Nevertheless, these photochromic fluorescent materials continue to grapple with the issue of aggregation-caused quenching (ACQ), a common problem faced by traditional fluorescent materials. Therefore, the integration of DTE systems with aggregation-induced emission (AIE) systems presents a promising solution to tackle this predicament, enabling an improved quantum yield for photochromic fluorescent materials in their aggregated state and broadening their range of applications. This review comprehensively summarizes and evaluates the construction strategies and application prospects of DTE-based photochromic AIE luminogens (AIEgens) in recent years, while also providing an outlook on their future development.

18.
J Clin Med ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068469

RESUMO

PURPOSE: To examine the wavelength characteristics of photochromic contact lenses (CL) and evaluate the impact of tinting on visual function in indoor, outdoor, and glare environments. METHODS: A total of 33 healthy individuals with refractive errors were recruited and fully corrected for refractive errors. Three groups were established, including non-activated photochromic CL, activated photochromic CL, and lenses without photochromic properties, which replicated the dimming characteristics of CL. Visual acuity and contrast sensitivity were measured and compared among the three groups. RESULTS: Statistically significant differences were observed in the spatial frequency (6, 12 cpd) and contrast sensitivity outdoors, with improved values recorded in the activated photochromic-CL group. In subsequent comparisons, the activated-photochromic-CL group demonstrated significantly better contrast-sensitivity values than the non-photochromic-CL group, as well as significant improvement in contrast sensitivity compared to the non-activated-photochromic-CL group. No significant differences were observed in the indoor or outdoor visual acuity. CONCLUSION: Our results suggest that photochromic CL enhances visual function in outdoor environments, while maintaining visual function indoors and under glare, thereby improving the quality of vision (QOV) in severe light conditions where exposure to sunlight and ultraviolet light is anticipated.

19.
Nanomaterials (Basel) ; 13(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132990

RESUMO

Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical environmental issues, optimizing the photocatalytic efficacy of photochromic substances has not been adequately addressed. This research advances the study of REMOHs, focusing on the properties of gadolinium oxyhydride (GdHO) both theoretically and experimentally. The electronic and structural characteristics of GdHO, vital for ceramic technology, are thoroughly examined. Explicitly determined work functions for GdH2, GdHO, and Gd2O3 stand at 3.4 eV, 3.0 eV, and 4.3 eV, respectively. Bader charge analysis showcases GdHO's intricate bonding attributes, whereas its electron localization function majorly presents an ionic nature. The charge neutrality level is situated about 0.33 eV below the top valence band, highlighting these materials' inclination for acceptor-dominant electrical conductivity. Remarkably, this research unveils GdHO films' photocatalytic capabilities for the first time. Even with their restricted surface due to thinness, these films follow the Langmuir-Hinshelwood degradation kinetics, ensuring total degradation of methylene blue in a day. It was observed that GdHO's work function diminishes with reduced deposition pressure, and UV exposure further decreases it by 0.2 eV-a change that reverts post-UV exposure. The persistent stability of GdHO films, hinting at feasible recyclability, enhances their potential efficiency, underlining their viability in practical applications. Overall, this study accentuates GdHO's pivotal role in electronics and photocatalysis, representing a landmark advancement in the domain.

20.
Molecules ; 28(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005327

RESUMO

A novel photochromic heteropolyacid-based composite film consisting of phosphomolybdic acid (PMoA), ZnO, and polyvinylpyrrolidone (PVP) was fabricated by a sol-gel process. The microstructure and photochromic properties of the PMoA/ZnO/PVP were characterized via Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible spectroscopy (UV-Vis). The FTIR spectra showed that the basic structures of ZnO and PVP, and the Keggin structure of PMoA in the PMoA/ZnO/PVP composite film, had not been destroyed during the preparation. The TEM images demonstrated that ZnO presented a rod-like structure, while PMoA was spherical, and many PMoA balls adhered to the surface of the ZnO rods. The XPS spectra of Mo 3d indicated that the valency of Mo atoms in the PMoA/ZnO/PVP was changed by visible light exposure. After visible light irradiation, the PMoA/ZnO/PVP varied from slight yellow to blue, while undergoing an opposite color change upon heating. The discoloration mechanism of the PMoA/ZnO/PVP was consistent with the photoelectron transfer mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...